A wavelet multilevel method for ill-posed problems stabilized by Tikhonov regularization
نویسندگان
چکیده
منابع مشابه
The index function and Tikhonov regularization for ill-posed problems
In this paper, we study the regularizing properties of the conditional stability estimates in ill-posed problems. First, we analyze how conditional stability estimates occur, and which properties the corresponding index functions must obey. In addition, we adapt the convergence analysis for the Tikhonov regularization in Banach spaces where the difference between the approximated solution and t...
متن کاملFractional Tikhonov regularization for linear discrete ill- posed problems
Tikhonov regularization is one of the most popular methods for solving linear systems of equations or linear least-squares problems with a severely ill-conditioned matrix A. This method replaces the given problem by a penalized least-squares problem. The present paper discusses measuring the residual error (discrepancy) in Tikhonov regularization with a seminorm that uses a fractional power of ...
متن کاملGreedy Tikhonov regularization for large linear ill-posed problems
Several numerical methods for the solution of large linear ill-posed problems combine Tikhonov regularization with an iterative method based on partial Lanczos bidiagonalization of the operator. This paper discusses the determination of the regularization parameter and the dimension of the Krylov subspace for this kind of methods. A method that requires a Krylov subspace of minimal dimension is...
متن کاملProjected Tikhonov Regularization of Large-Scale Discrete Ill-Posed Problems
The solution of linear discrete ill-posed problems is very sensitive to perturbations in the data. Confidence intervals for solution coordinates provide insight into the sensitivity. This paper presents an efficient method for computing confidence intervals for large-scale linear discrete ill-posed problems. The method is based on approximating the matrix in these problems by a partial singular...
متن کاملWavelet-based multilevel methods for linear ill-posed problems
The representation of linear operator equations in terms of wavelet bases yields a multilevel framework, which can be exploited for iterative solution. This paper describes cascadic multilevel methods that employ conjugate gradient-type methods on each level. The iterations are on each level terminated by a stopping rule based on the discrepancy principle.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Numerische Mathematik
سال: 1997
ISSN: 0029-599X,0945-3245
DOI: 10.1007/s002110050250